

BASICS OF NUCLEAR MAGNETIC RESONANCE

Bernard Lanz, PhD

CIBM MRI EPFL

24.04.2023

PHYS-760

CIBM translational MR neuroimaging & spectroscopy

THE ORIGIN OF MAGNETIC RESONANCE

- MRI/MRS are powerful imaging techniques for their <u>flexibility</u> and sensitivity to a wide range of tissue properties
- MRI/MRS are popular for their relative safety, their non-invasive nature, the use of <u>no ionizing radiation</u>.
- MRI/MRS are applications of NMR (nuclear magnetic resonance) to radiology.
- (N) Nuclear (we play with the atom nucleus)
- Magnetic (we interact with it with magnetic fields)
- Resonance (we need to match the RF field to the natural precession of the nucleus)
- I/S Imaging or Spectroscopy (the outcome measurements)

NUCLEAR MAGNETIC RESONANCE

Magnetic fields in the game:

■ Main magnetic field B_0 : on the order of 1 T

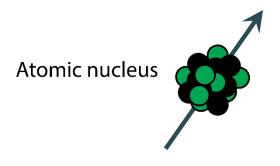
■ Gradient fields G_x , G_y , G_z : on the order of 100 mT/m

- Radio frequency (resonant) field B₁: on the order of 10 μT
 - Very low amplitude (earth magnetic field ≈ 25-65 µT)
 - Very high frequency (on the order of 100 MHz)
 - Depends linearly on the applied B₀ field and Nucleus of interest

THE ORIGIN OF MAGNETIC RESONANCE

The dual nature of the MR phenomenon

Interaction of magnetic moments of nuclei with the magnetic field:



Atomic nuclei possess an intrinsic angular momentum (spin) L,
 as a composition of the spin of their composing protons and neutrons

- proton (spin 1/2)
- neutron (spin 1/2)

• According to quantum mechanics, L is quantized: $|\vec{L}| = \left(\frac{h}{2\pi}\right)\sqrt{I(I+1)}$ I= 0, 1/2, 1, 3/2, ...

Depending on their composition:

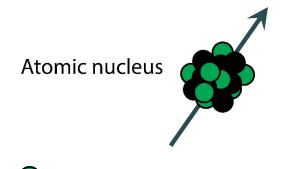
- even number of protons and neutrons I=0

- odd number of protons and neutrons I=integer

NUCLEAR SPIN AND MAGNETIC MOMENT

The dual nature of the MR phenomenon

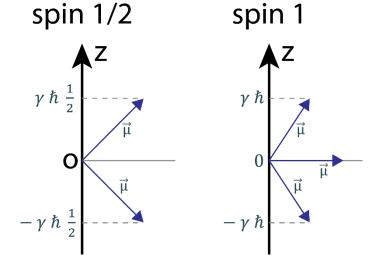
Interaction of magnetic moments of nuclei with the magnetic field:



- The intrinsic angular momentum L is associated to a magnetic moment μ:
 - $\vec{\mu}=\gamma\,\vec{L}$ with γ the gyromagnetic ratio, specific for each nucleus, specifying the strength of coupling between the magnetic field and the angular momentum.

- proton (spin 1/2)neutron (spin 1/2)
- In the magnetic field $\overrightarrow{B_0}$ defined as $\overrightarrow{B_0} = B_0 \ \widehat{e_z}$, the measured projection of the nuclear magnetic moment $\overrightarrow{\mu}$ are quantized:

$$\mu_z = \gamma \, \hbar \, m$$
 with m = -I, -I+1, ...,I-1, I
$$(2I+1 \text{ values})$$



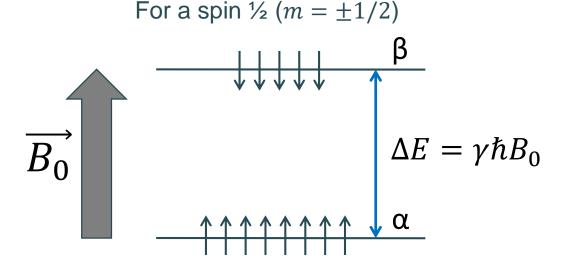
ZEEMAN ENERGY LEVELS

Zeeman energy:

Potential energy of a magnetized nucleus in an external magnetic field

$$E = -\vec{\mu} \cdot \overrightarrow{B_0}$$

$$E = -\mu_z B_0 = -\gamma \hbar \text{ m } B_0$$

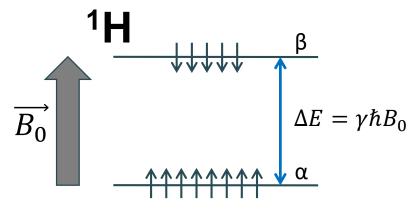


There is no spontaneous transition between energy levels (no emission of energy)

All changes in the energy of nuclei are through stimulated transitions

ZEEMAN ENERGY LEVELS: SPIN DISTRIBUTION

Zeeman energy:



Boltzmann distribution:

$$\left(\frac{n_{\alpha}}{n_{\beta}}\right) = e^{\frac{\gamma B_0 \hbar}{kT}}$$

Linearized Boltzmann distribution: $(n_{\alpha} - n_{\beta}) \approx \left(\frac{nh\gamma B_0}{2kT}\right)$

- Amplitude of the magnetization: $M_0 = (n_\alpha n_\beta)\mu_z = (n_\alpha n_\beta)\gamma^{\frac{\hbar}{2}}$
- Total magnetization: $M_0 = n \frac{1}{2} (\gamma \hbar)^2 \left(\frac{B_0}{2kT} \right) \propto \gamma^2$

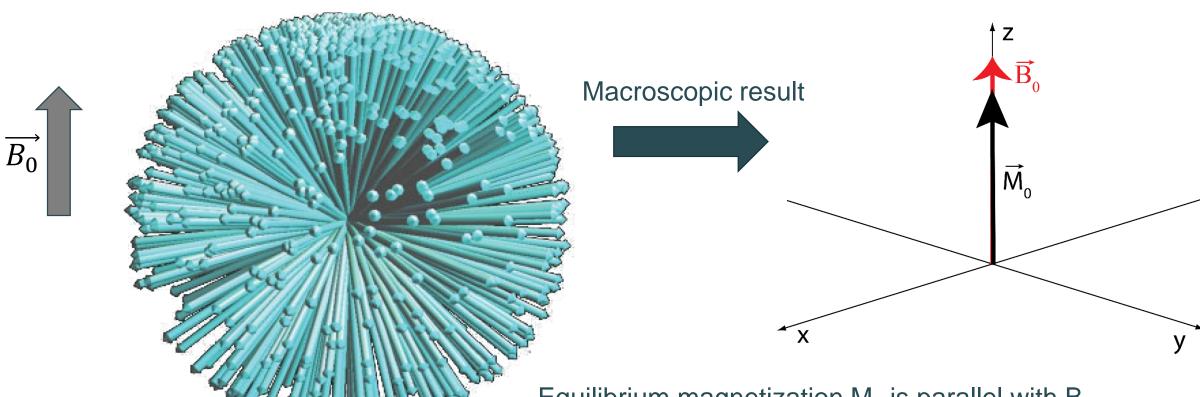
INTERESTING NUCLEI / ISOTOPES

Nucleus	Magnetic moment	Gyromagnetic ratio (rad·MHz T ⁻¹)	Relative sensitivity	Natural abundance (%)
¹ H	1/2	267.522	1.0	99.98
^{2}H	1	41.066	0.00965	0.015
13 C	1/2	67.283	0.0159	1.108
14 N	1	19.338	0.0101	99.63
15 N	1/2	-27.126	0.0104	0.37
¹⁹ F	1/2	251.815	0.83	100
²³ Na	3/2	70.808	0.0925	100
²⁹ Si	1/2	-53.190	0.00784	4.7
31 P	1/2	108.394	0.0663	100

MACROSCOPIC MAGNETIZATION

Large spin ensemble

Magnetization



Equilibrium magnetization M_0 is parallel with B_0 (longitudinal magnetization),

its status can be changed by a radiofrequency magnetic field

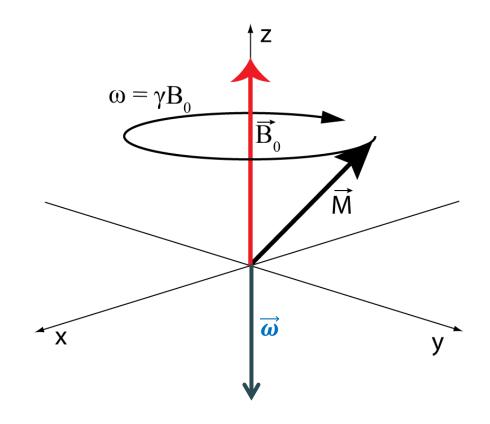
PRECESSION

Equation of precession:

$$\frac{d\vec{M}}{dt} = \gamma \vec{M} \times \vec{B_0}$$

For positive γ (¹H, ¹³C, ³¹P)

 $(\vec{\omega}//\vec{B_0})$ for negative γ , ¹⁵N, ¹⁷O)

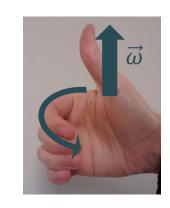


Rotation defined with an angular speed vector:

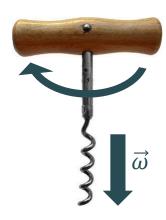
$$\frac{d\vec{M}}{dt} = \vec{\omega} \times \vec{M}$$

With

 $\omega = \gamma B_0 \equiv \omega_0$ The Larmor frequency



Or corkscrew rule...



THE ROTATING FRAME(S)

LARMOR FRAME

In the laboratory frame:

$$\frac{d\vec{M}}{dt} = \gamma \vec{M} \times \vec{B_0}$$

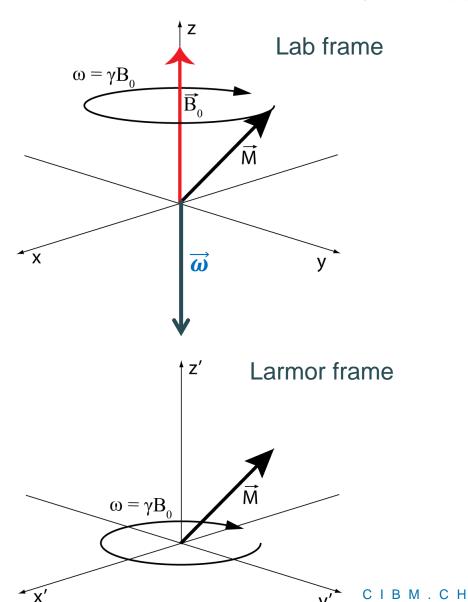
Expression in the rotating frame:

$$\left(\frac{d\vec{M}}{dt}\right)_{lab} = \left(\frac{d\vec{M}}{dt}\right)_{rot} + \vec{\omega} \times \vec{M}$$

In the Larmor rotating frame:

$$\left(\frac{d\overrightarrow{M}}{dt}\right)_{rot} = \left(\frac{d\overrightarrow{M}}{dt}\right)_{lab} + \gamma \overrightarrow{B_0} \times \overrightarrow{M}$$

$$\frac{d\vec{M}}{dt} = 0$$
 \rightarrow No apparent B₀ magnetic field



FLIP ANGLE

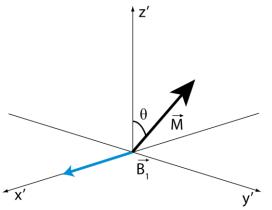
THE RESONANCE CONDITION

If we apply a pulse $B_1(t)$ right at the Larmor frequency of the considered spin system

$$\rightarrow \omega_{RF} = \omega_0$$

The dynamics of the magnetization is very much simplified:

$$\left(\frac{d\vec{M}}{dt}\right)_{rot} = \gamma \vec{M} \times \overrightarrow{B_1(t)}$$
 with $B_1(t)$ the envelope of the pulse

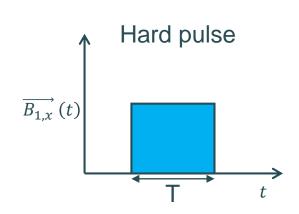


Flip angle (nutation angle)

$$\theta = \gamma \int_{t}^{T} B_{1}(t) dt$$

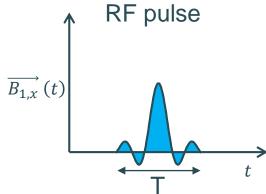
For a hard pulse

$$\theta = \gamma B_1 T$$



For a general pulse

$$\theta = \gamma B_1 T S_{int}$$



with S_{int} the pulse shape integral

QUANTUM DESCRIPTION

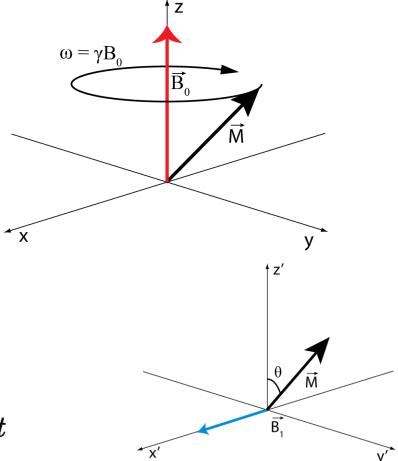
Single spin expectation values

$$<\mu_x> = rac{\gamma\hbar}{2}\sin\theta\cos\left(\phi_0 - \omega_0 t\right)$$

 $<\mu_y> = rac{\gamma\hbar}{2}\sin\theta\sin\left(\phi_0 - \omega_0 t\right)$
 $<\mu_z> = rac{\gamma\hbar}{2}\cos\theta$

$$\begin{aligned}
\langle \mu_{x'}(t) \rangle &= \langle \mu_{x'}(0) \rangle \\
\langle \mu_{y'}(t) \rangle &= \langle \mu_{y'}(0) \rangle \cos \omega_1 t + \langle \mu_z(0) \rangle \sin \omega_1 t \\
\langle \mu_z(t) \rangle &= -\langle \mu_{y'}(0) \rangle \sin \omega_1 t + \langle \mu_z(0) \rangle \cos \omega_1 t
\end{aligned}$$

Haake et al., Magnetic Resonance Imaging, Physical principles and sequence design, Wiley 1999

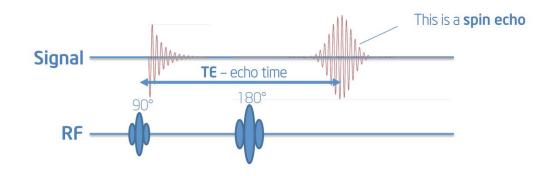


RF PULSES ARE NEEDED FOR ALL MRI / MRS

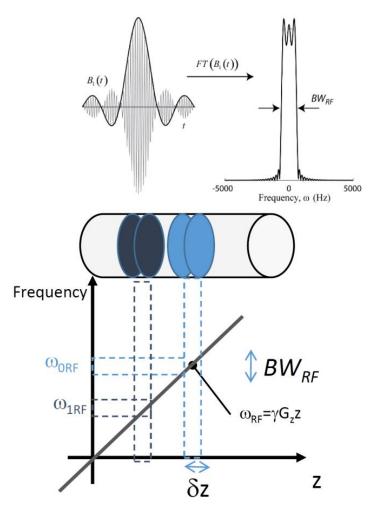
ACQUISITIONS

For slice selection, a gradient is applied during an RF-pulse, which is characterized by its excitation bandwidth (BW_{RF})

A simple pulse sequence - Spin Echo



A 'spin echo' will still use gradients – but it is the refocusing via the RF pulse which makes the distinction



THE ROTATING FRAME(S)

RF FRAME

In the laboratory frame:

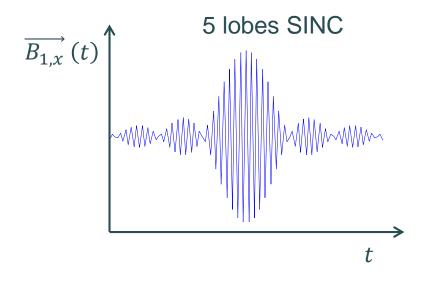
$$\overrightarrow{B_1}(t) = B_1(t)\cos(\omega_{RF} t) \hat{x} + B_1(t)\sin(\omega_{RF} t) \hat{y}$$

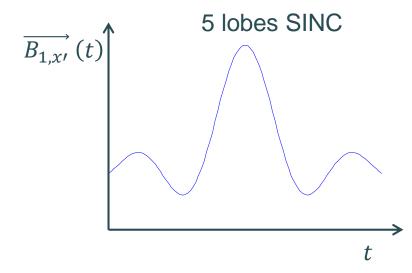
In the RF rotating frame:

$$\begin{pmatrix} B_{1,x'}(t) \\ B_{1,y'}(t) \\ B_{1,z'}(t) \end{pmatrix}_{rot} = \begin{pmatrix} \cos(\omega_{RF} t) & -\sin(\omega_{RF} t) & 0 \\ \sin(\omega_{RF} t) & \cos(\omega_{RF} t) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} B_1(t)\cos(\omega_{RF} t) \\ B_1(t)\sin(\omega_{RF} t) \\ 0 \end{pmatrix}_{lab}$$

$$\begin{pmatrix} B_{1,x'}(t) \\ B_{1,y'}(t) \\ B_{1,z'}(t) \end{pmatrix}_{rot} = \begin{pmatrix} B_1(t) \\ 0 \\ 0 \end{pmatrix}$$

The rotating frame has demodulated the RF oscillation and transformed the rapidly oscillating RF field into a much simpler form, the time-dependent envelope $B_1(t)$.





THE ROTATING FRAME(S)

RF FRAME

CIBM Center for Biomedical Imaging

In the laboratory frame:

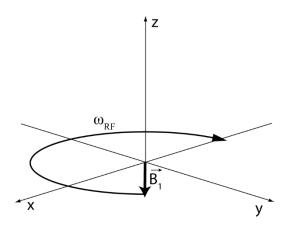
$$\overrightarrow{B_1}(t) = B_1(t)\cos(\omega_{RF} t) \hat{x} + B_1(t)\sin(\omega_{RF} t) \hat{y}$$

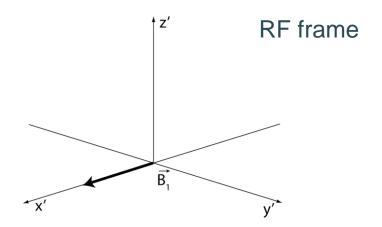
In the RF rotating frame:

$$\begin{pmatrix} B_{1,x}(t) \\ B_{1,y}(t) \\ B_{1,z}(t) \end{pmatrix}_{rot} = \begin{pmatrix} \cos(\omega_{RF} \ t) & -\sin(\omega_{RF} \ t) & 0 \\ \sin(\omega_{RF} \ t) & \cos(\omega_{RF} \ t) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} B_1(t) \cos(\omega_{RF} \ t) \\ B_1(t) \sin(\omega_{RF} \ t) \\ 0 \end{pmatrix}_{lab}$$

$$\begin{pmatrix} B_{1,x}(t) \\ B_{1,y}(t) \\ B_{1,z}(t) \end{pmatrix}_{rot} = \begin{pmatrix} B_1(t) \\ 0 \\ 0 \end{pmatrix}$$

The rotating frame has demodulated the RF oscillation and transformed the rapidly oscillating RF field into a much simpler form, the time-dependent envelope $B_1(t)$.





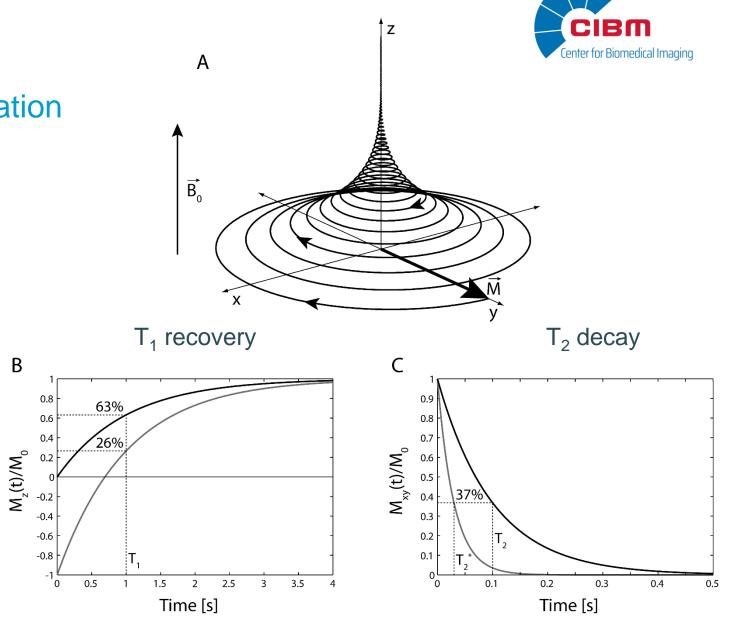
RELAXATION(S)

Macroscopic magnetization relaxation

After excitation, the spin ensemble reaches its thermal equilibrium:

- spin-lattice relaxation time T₁ (transition from higher energy state to equilibrium)
 - → longitudinal relaxation
- spin-spin relaxation time T₂ (loss of coherence (order) of the microscopic components)
 - → transverse relaxation

Relaxation is caused by random fluctuating magnetic fields on a molecular or submolecular level (dominated by dipolar coupling)



TRANSVERSE RELAXATION

Macroscopic contributions

■ Inhomogeneous B₀ contributes to the decay of transverse magnetization

(bad shim, static B₀ components due to differences in magnetic susceptibility between water and air leads in the proximity to their boundary)

Then the decay of M_{xy} is faster (with the time constant $1/T_2^*$) than that corresponding to the T_2 relaxation time:

$$\frac{1}{T_2^*} = \frac{1}{T_2} + \Delta B_0 / 2\gamma$$

 ΔB_0 increases with magnetic field (shorter T_2^*) and has less impact on low gyromagnetic ratio nuclei

T₁ and particularly T₂ relaxation times are shorter than in aqueous solutions

due to Interactions water / biomacromolecules / low molecular-weight solutes

$$\frac{d\vec{M}}{dt} = \gamma \vec{M} \times \vec{B} - \frac{M_{\chi}\hat{x} + M_{\chi}\hat{y}}{T_2} - \frac{(M_0 - M_Z)\hat{z}}{T_1} + D\nabla^2 \vec{M}$$

Larmor precession
With the total field
(or effective field in the rotating frame)

Transverse and longitudinal Relaxations

T2 ~ 50-100 ms T1 ~ 1 s

Pulse duration $\sim 100 \, \mu s - 5 \, ms$

Typically Neglected for RF design Diffusion effects.

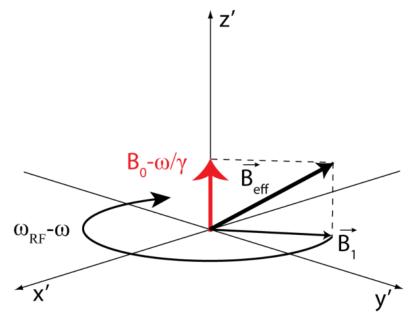
Typically
Neglected
for RF design

CIBM Center for Biomedical Imaging

IN A ROTATING FRAME (ω)

$$\left(\frac{d\vec{M}}{dt}\right)_{rot} = \gamma \vec{M} \times \overrightarrow{B_{eff}}$$

$$B_{eff} = B_1(t)\cos((\omega_{RF} - \omega)t)\hat{x} + B_1(t)\sin((\omega_{RF} - \omega)t)\hat{y} + \left(B_0 - \frac{\omega}{\gamma}\right)\hat{z}$$

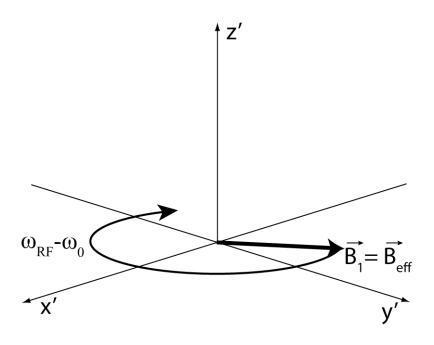


CIBM Center for Biomedical Imaging

IN THE LARMOR ROTATING FRAME (ω_0)

$$\left(\frac{d\vec{M}}{dt}\right)_{rot} = \gamma \vec{M} \times \overrightarrow{B_{eff}}$$

$$B_{eff} = B_1(t)\cos((\omega_{RF} - \omega_0)t)\hat{x} + B_1(t)\sin((\omega_{RF} - \omega_0)t)$$

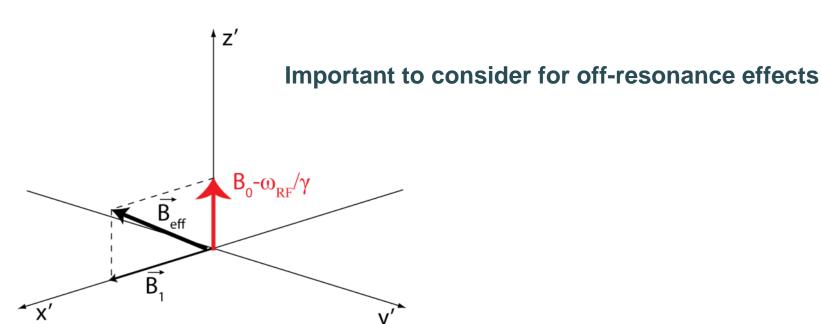


CIBM Center for Biomedical Imagin

IN THE RF FRAME (ω_{RF})

$$\left(\frac{d\vec{M}}{dt}\right)_{rot} = \gamma \vec{M} \times \overrightarrow{B_{eff}}$$

$$B_{eff} = B_1(t) \hat{\mathbf{x}} + \left(B_0 - \frac{\omega_{RF}}{\gamma}\right) \hat{\mathbf{z}}$$



FLIP ANGLE

CIBM Center for Biomedical Imaging

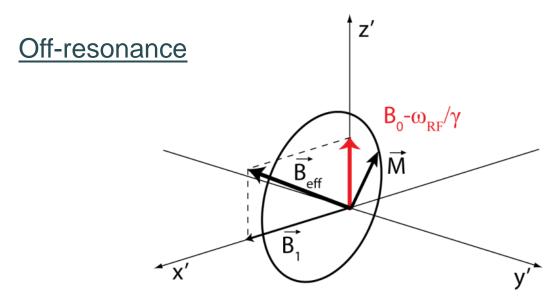
OFF-RESONANCE EFFECTS

In the RF rotating frame:

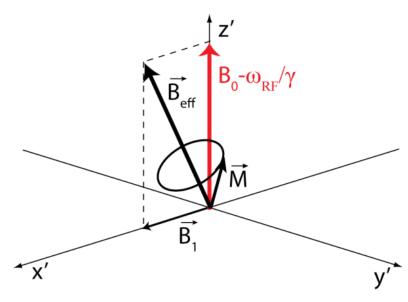
$$\left(\frac{d\vec{M}}{dt}\right)_{RF} = \gamma \vec{M} \times \left[B_1(t) \hat{\mathbf{x}} + \left(B_0 - \frac{\omega_{RF}}{\gamma}\right) \hat{\mathbf{z}}\right]$$

With the offset $\Delta \omega = \gamma B_0 - \omega_{RF}$

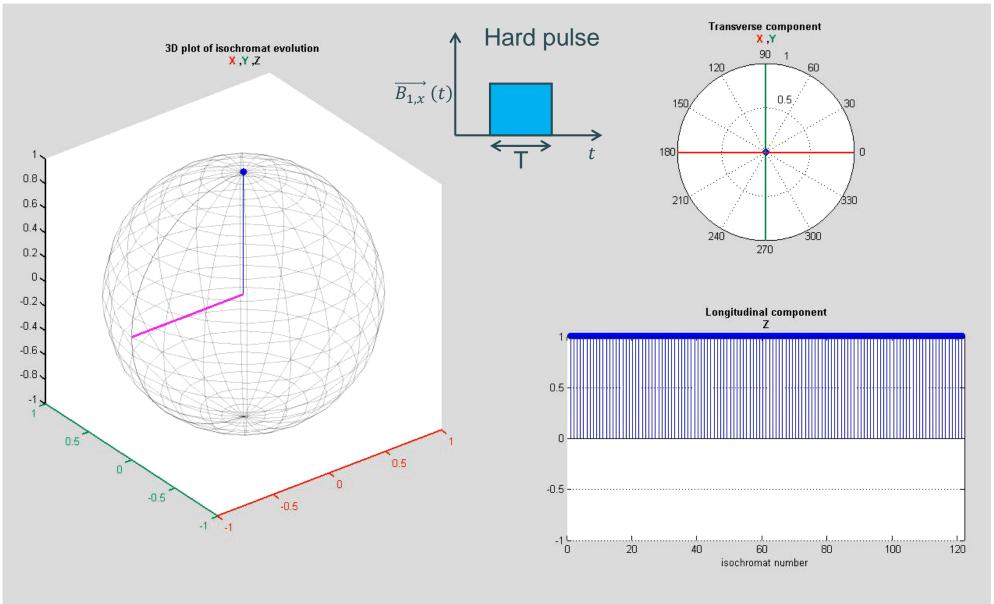
The magnetization of a spin system with same offset $\Delta \omega$ is called an <u>isochromat</u>.



Far off-resonance (no xy plane crossing anymore)



PULSE BANDWIDTH (90° PULSE EXAMPLE)

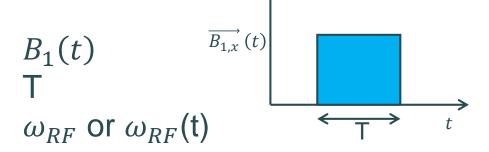


FLIP ANGLE

PULSE BANDWIDTH (180° PULSE EXAMPLE)

Hard pulse:

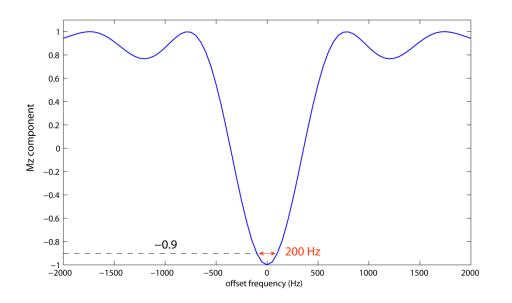
Parameters:



Hard pulse

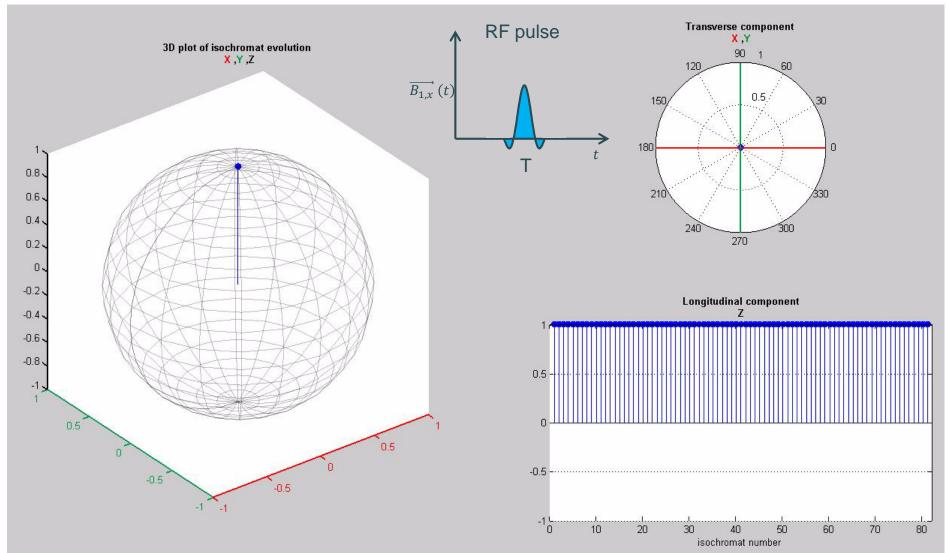
Characteristics:

(Example: inversion pulse)



SINC PULSES

90° B1 at 32.8 $\mu T \rightarrow$ duration 3.23 ms



FLIP ANGLE

FOURIER TRANSFORM APPROXIMATION

Complex notation: $M_{\perp} = M_{\chi} + i M_{\gamma}$

precession: $\frac{dM_{\perp}}{dt} = -i\Delta\omega M_{\perp} + i\gamma B_{1}(t)M_{z}(t)$

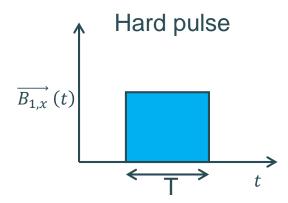
With the initial conditions $M_{\perp}(0) = 0$

$$M_{\perp}(t) = i\gamma e^{-i \Delta\omega t} \int_{0}^{t} M_{z}(t') B_{1}(t') e^{i \Delta\omega t'} dt'$$

For small flip angles, $M_z(t') = M_0$

$$|M_{\perp}(t)| = \gamma M_0 \left| \int_0^t B_1(t') e^{i \Delta \omega t'} dt' \right|$$

For small flip angles, the pulse response profile is approximately equal to the modulus of the inverse Fourier transform of the RF envelope.



FLIP ANGLE

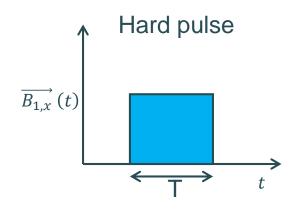
FOURIER TRANSFORM APPROXIMATION

Complex notation:

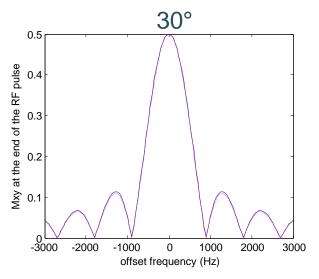
$$M_{\perp} = M_{\chi} + i M_{\gamma}$$

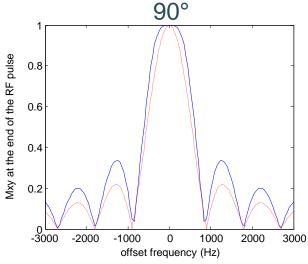
$$|M_{\perp}(t)| = \gamma M_0 \left| \int_0^t B_1(t') e^{i \Delta \omega t'} dt' \right|$$

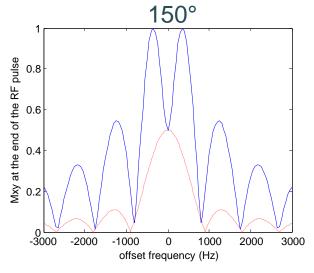
inverse Fourier transform



Different angles:







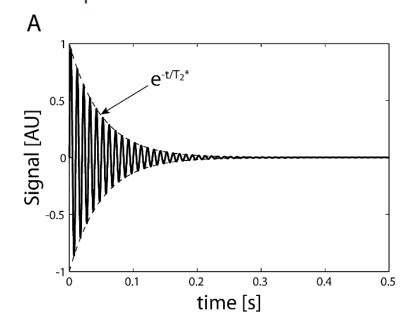
Fourier transform of the envelopeSolution of the Bloch equation

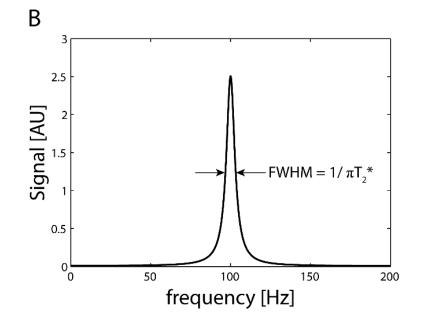
BASIC PULSE SEQUENCES

(FID, FREE INDUCTION DECAY)

Pulse acquire sequence

Excitation pulse





During TR, T1 relaxation takes place.

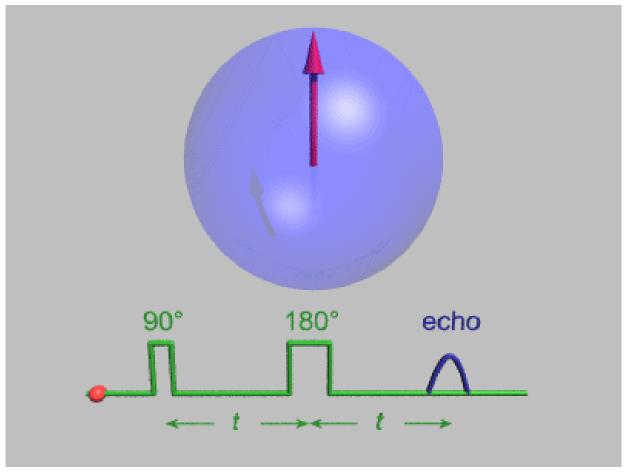
There is an optimal flip angle for maximal signal for a given TR and T1:

$$\theta_E = \arccos\left(e^{-\frac{TR}{T_1}}\right)$$

(Ernst angle)

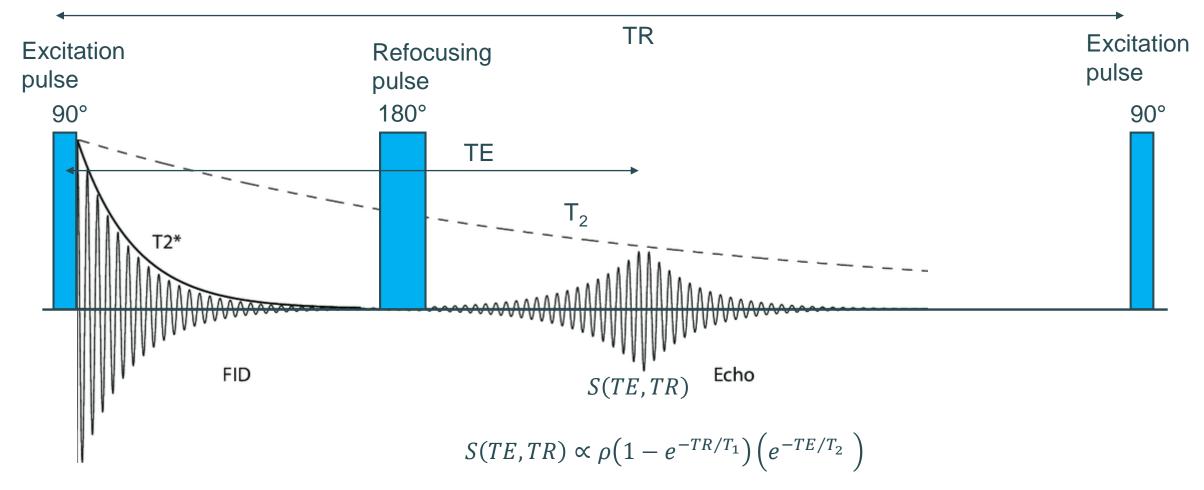
BASIC PULSE SEQUENCES (SPIN-ECHO)

Spin gymnastics



Gavin W Morley, Wikimedia Commons

BASIC PULSE SEQUENCES (SPIN-ECHO)



In MRI, this can be used to generate T_2 and T_1 contrasts. In MRS, it is typically used in fully relaxed conditions ($T_1 > 5$ TR) to recover in-phase signal

THANK YOU FOR YOUR ATTENTION

Questions?

PHYS-760

bernard.lanz@epfl.ch